Efficient dense labelling of human activity sequences from wearables using fully convolutional networks
نویسندگان
چکیده
Recognizing human activities in a sequence is a challenging area of research in ubiquitous computing. Most approaches use a fixed size sliding window over consecutive samples to extract features— either handcrafted or learned features—and predict a single label for all samples in the window. Two key problems emanate from this approach: i) the samples in one window may not always share the same label. Consequently, using one label for all samples within a window inevitably lead to loss of information; ii) the testing phase is constrained by the window size selected during training while the best window size is difficult to tune in practice. We propose an efficient algorithm that can predict the label of each sample, which we call dense labeling, in a sequence of human activities of arbitrary length using a fully convolutional network. In particular, our approach overcomes the problems posed by the sliding window step. Additionally, our algorithm learns both the features and classifier automatically. We release a new daily activity dataset based on a wearable sensor with hospitalized patients. We conduct extensive experiments and demonstrate that our proposed approach is able to outperform the state-of-the-arts in terms of classification and label misalignment measures on three challenging datasets: Opportunity, Hand Gesture, and our new dataset.
منابع مشابه
Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
The trend towards higher resolution remote sensing imagery facilitates a transition from land-use classification to object-level scene understanding. Rather than relying purely on spectral content, appearance-based image features come into play. In this work, deep convolutional neural networks (CNNs) are applied to semantic labelling of high-resolution remote sensing data. Recent advances in fu...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملExploring Convolutional and Recurrent Neural Networks in Sequential Labelling for Dialogue Topic Tracking
Dialogue topic tracking is a sequential labelling problem of recognizing the topic state at each time step in given dialogue sequences. This paper presents various artificial neural network models for dialogue topic tracking, including convolutional neural networks to account for semantics at each individual utterance, and recurrent neural networks to account for conversational contexts along m...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 78 شماره
صفحات -
تاریخ انتشار 2018